Section 14.5

Directional Derivatives and Gradients

Directional Derivative

- Geometry of Directional Derivatives Sketch of a Proof and Formula
- Example
- Gradients Directional Derivatives in 3 Variables

Directions of Fastest Increase and Fastest Decrease Gradients and Level Sets Examples

Tangent Planes and Normal Lines

Prelecture Review Video

1 Directional Derivative

Joseph Phillip Brennan Jila Niknejad

Directional Derivatives

Let z = f(x, y), and let (a, b) be a point in the domain of f.

 $f_x(a, b)$ is the rate of change in the x-direction (i-direction) at (a, b).

 $f_y(a, b)$ is the rate of change in the y-direction (\vec{j} -direction) at (a, b).

Joseph Phillip Brennan Jila Niknejad

Question: What is the rate of change of f(x, y) in any given direction?

Notation and Definition of Directional Derivatives

To answer the question, consider the line through (a, b, f(a, b)) with <u>unit</u> direction vector $\vec{u} = \langle u_1, u_2 \rangle$. This line is parametrized by

$$x(t) = a + u_1 t \qquad \qquad y(t) = b + u_2 t$$

The rate of change of f in the \vec{u} -direction is

Link

$$\underbrace{\underbrace{\mathsf{D}_{\vec{u}}f(a,b)}_{\text{Notation}}}_{\text{Notation}} = \underbrace{\lim_{t \to 0} \frac{f(\vec{r}_P + t\vec{u}) - f(P)}{t}}_{\text{definition}} = \lim_{t \to 0} \frac{f(a + u_1t, b + u_2t) - f(a,b)}{t}$$

which is called the <u>directional derivative</u> of f in the direction \vec{u} .

• For example,
$$D_{\vec{i}} f(a, b) = f_x(a, b)$$
 and $D_{\vec{j}} f(a, b) = f_y(a, b)$.

Geometric Definition of Directional Derivatives

The directional derivative $D_{\vec{u}}f(a,b)$ is a scalar that measures the instantaneous rate of change, namely

change in the value of f(x, y)horizontal distance traveled in direction \vec{u}

Remember that \vec{u} must be a unit vector!

Since the tangent line in direction \vec{u} at (a, b, f(a, b)) is on the tangent plane, the slope measures to be

Other Representations, Gradient Vector and Formula for the Directional Derivative

Let $\vec{u} = \langle p, q \rangle$ be a unit vector and f(x, y) a differentiable function of two variables. Let $g(t) = f(a + u_1t, b + u_2t)$,

$$D_{\vec{u}}f(a,b) = \lim_{t \to 0} \frac{f(a+u_1t, b+u_2t) - f(a,b)}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t}$$

= $g'(0) = u_1 f_x(a,b) + u_2 f_y(a,b)$ (Revisit after Section 14.6)
= $\langle f_x(a,b), f_y(a,b) \rangle \cdot \vec{u}.$

The gradient vector of f at (a, b) is

 $\nabla f(a,b) = \langle f_x(a,b), f_y(a,b) \rangle$

In terms of this new notation,

 $D_{\vec{u}}f(a,b) = \nabla f(a,b) \cdot \vec{u}$

Directional Derivatives: Examples

Example 1: Calculate the directional derivative of

$$f(x,y) = x^3y^2 + 7x^2y^3$$

at (1,1) in the direction of the vector $\vec{v} = \langle -2, 1 \rangle$. Solution: *First*, find a unit vector \vec{u} parallel to \vec{v} :

$$\|\vec{\mathbf{v}}\| = \sqrt{5}$$
 $\vec{\mathbf{u}} = \frac{\vec{\mathbf{v}}}{\|\vec{\mathbf{v}}\|} = \left\langle -\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right\rangle$

Second, calculate the gradient vector at (1, 1):

$$\nabla f(x,y) = \langle 3x^2y^2 + 14xy^3, \ 2x^3y + 21x^2y^2 \rangle$$
 $\nabla f(1,1) = \langle 17,23 \rangle$

Third, calculate the directional derivative:

$$D_{\overline{u}}f(1,1) = \langle 17,23 \rangle \cdot \left\langle -\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right\rangle = \boxed{-\frac{11}{\sqrt{5}}}$$

Gradients and Directional Derivatives in 3 Variables

Let f(x, y, z) be a function of 3 variables. The **gradient vector** of differentiable function f at a point (a, b, c) in the domain of f is

$$\nabla f(a,b,c) = \langle f_x(a,b,c), f_y(a,b,c), f_z(a,b,c) \rangle.$$

If $\vec{u} = \langle u_1, u_2, u_3 \rangle$ is a unit vector, then the **directional derivative** of f at (a, b, c) in the direction of \vec{u} is

$$D_{\vec{u}}f(a, b, c) = \lim_{t \to 0} \frac{f(a + u_1t, b + u_2t, c + u_3t) - f(a, b, c)}{t}$$
$$= \nabla f(a, b, c) \cdot \vec{u}.$$

The definitions are similar for functions in any number of variables.

Directional Derivative in Picture

Directional Derivatives: Examples

Example 2: Calculate the directional derivative of

$$f(x,y,z) = x^3 - xy^2 - z$$

at (1,1,0) in the direction of the vector $\vec{v}=\langle 2,-3,6\rangle$.

<u>Solution</u>: *First*, normalize \vec{v} to a unit vector \vec{u} :

$$\|\vec{v}\| = 7$$
 $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \left\langle \frac{2}{7}, \frac{-3}{7}, \frac{6}{7} \right\rangle$

Second, calculate the gradient vector at (1, 1, 0):

$$abla f(x,y,z) = \left\langle 3x^2 - y^2, -2xy, -1 \right\rangle \qquad
abla f(1,1,0) = \left\langle 2, -2, -1 \right\rangle$$

Third, calculate the directional derivative:

$$D_{\overline{u}}f(1,1,0) = \langle 2,-2,-1 \rangle \cdot \left\langle rac{2}{7}, \ rac{-3}{7}, \ rac{6}{7}
ight
angle = \left[rac{4}{7}
ight]$$

2 Directions of Fastest Increase and Fastest Decrease

by Joseph Phillip Brennan Jila Niknejad

Directions with Extreme Rates of Change

Suppose that f is a differentiable function of two variables and \vec{u} is a unit vector.

$$D_{\vec{u}} f(a, b) = \nabla f(a, b) \cdot \vec{u} = \|\nabla f(a, b)\| \|\vec{u}\| \cos(\theta) = \underbrace{\|\nabla f(a, b)\|}_{\text{nonnegative}} \cos(\theta)$$

where θ is the angle between $\nabla f(a, b)$ and \vec{u} . Therefore...

The gradient ∇f points in the direction that f is increasing fastest.

- I.e., the largest (smallest) directional derivative is in the direction ∇f(a, b) (or -∇f(a, b)) and equal to ||∇f(a, b)|| (or -||∇f(a, b)||). (This assumes ∇f(a, b) ≠ 0. What if ∇f(a, b) = 0? Stay tuned!)
- The directional derivative is **zero** in any direction **orthogonal** to $\nabla f(a, b)$.

Gradients and Level Sets

Remember that the level curves of f(x, y) are the curves where f is constant. If f(a, b) = k, then (a, b) is on the level curve

$$L_k(f) = \{(x, y) | f(x, y) = k\}$$

 $\nabla f(a, b)$ is orthogonal to the tangent line of $L_k(f)$ at (a, b).

Reason: Moving along the level curve does not change the value of f. So $D_{\vec{u}}f(P) = 0$, where \vec{u} points along the tangent line to the level curve. That is, $\nabla f(a, b) \perp \vec{u}$.

Visual Interpretation: Moving perpendicularly to the tangent line is the fastest way to move between level curves.

Gradients and Level Sets

The situation is similar for a function f(x, y, z) of three variables.

- ∇f(a, b, c) = direction of greatest increase of f at (a, b, c)
- D_uf(a, b, c) = 0 in any direction u tangent to the level surface L_k(f) (that is, if u lies in the tangent plane of L_k(f))
- $\nabla f(a, b, c)$ is orthogonal to the tangent plane
- Normal line to $L_k(f)$: the line through (a, b, c) with direction vector $\nabla f(a, b, c)$.

Directions with Extreme Rates of Change

Example 3: A metal surface *S* is shaped like the graph of $z = 2x^2 - xy + 4y^2 - 3y$. A marble is placed on the surface at the point P(1, 1, 2).

Part 1: Which way does the marble start to roll?

<u>Solution</u>: We want to find the direction of fastest *decrease* of f.

$$abla f(x,y) = \langle 4x - y, -x + 8y - 3 \rangle$$
 $abla f(1,1) = \langle 3,4 \rangle$

So the direction is $\langle -3, -4 \rangle$ (or $\langle -\frac{3}{5}, -\frac{4}{5} \rangle$ if you want a unit vector).

Part 2: Find a horizontal tangent line to S at P.

<u>Solution</u>: The direction vector is orthogonal to the gradient; use $\langle 4, -3 \rangle$. So the line can be written as

$$\vec{\mathsf{r}}(t) = \langle 1+4t, \ 1-3t, \ 2 \rangle$$

3 Tangent Planes and Normal Lines

by Joseph Phillip Brennan Jila Niknejad

Tangent Planes and Normal Lines

- We can find the tangent plane to any surface S defined by an equation in x, y, z (we do not need z to be a function of x and y).
- Express the equation in the form F(x, y, z) = constant

A level Surface of F

- Next, compute $\nabla F(x, y, z)$.
- Then, the equation of the tangent plane at any point (a, b, c) on S is

 $\nabla F(a, b, c) \cdot \langle x - a, y - b, z - c \rangle = 0$

and the normal line has equation

$$\vec{\mathsf{r}}(t) = \langle \mathsf{a}, \mathsf{b}, \mathsf{c} \rangle + t \nabla F(\mathsf{a}, \mathsf{b}, \mathsf{c})$$

or equivalently

$$x = a + tF_x(a, b, c), \quad y = b + tF_y(a, b, c), \quad z = c + tF_z(a, b, c).$$

Tangent Planes and Normal Lines

Example 4: Find the tangent plane and the normal line to the surface $4x^2 + 9y^2 - z^2 = 16$ at (2, 1, 3).

Solution: Let $F(x, y, z) = 4x^2 + 9y^2 - z^2$, so the surface is F(x, y, z) = 16.

 $\nabla F(x, y, z) = \langle 8x, 18y, -2z \rangle$ $\nabla F(2, 1, 3) = \langle 16, 18, -6 \rangle$

Tangent Plane:

$$16(x-2) + 18(y-1) - 6(z-3) = 0$$

Normal Line:

$$ec{\mathsf{r}}(t)=\langle 2,1,3
angle+t\,\langle 16,18,-6
angle$$

