Section 14.5

Directional Derivatives and Gradients

Directional Derivative
Geometry of Directional Derivatives
Sketch of a Proof and Formula
Example
Gradients Directional Derivatives in 3 Variables
Directions of Fastest Increase and Fastest Decrease Gradients and Level Sets
Examples
Tangent Planes and Normal Lines

1 Directional Derivative

Directional Derivatives

Let $z=f(x, y)$, and let (a, b) be a point in the domain of f.
$f_{x}(a, b)$ is the rate of change in the x-direction (\vec{i}-direction) at (a, b).
$f_{y}(a, b)$ is the rate of change in the y-direction ($\overrightarrow{\mathrm{j}}$-direction) at (a, b).

Question: What is the rate of change of $f(x, y)$ in any given direction?

Notation and Definition of Directional Derivatives

To answer the question, consider the line through $(a, b, f(a, b))$ with unit direction vector $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$. This line is parametrized by

$$
x(t)=a+u_{1} t \quad y(t)=b+u_{2} t
$$

The rate of change of f in the \vec{u}-direction is

$$
\underbrace{D_{\overrightarrow{\mathrm{u}}} f(a, b)}_{\text {Notation }}=\underbrace{\lim _{t \rightarrow 0} \frac{f\left(\overrightarrow{\mathrm{r}}_{P}+t \overrightarrow{\mathrm{u}}\right)-f(P)}{t}}_{\text {definition }}=\lim _{t \rightarrow 0} \frac{f\left(a+u_{1} t, b+u_{2} t\right)-f(a, b)}{t}
$$

which is called the directional derivative of f in the direction \vec{u}.

- For example, $D_{\overrightarrow{\mathrm{i}}} f(a, b)=f_{x}(a, b)$ and $D_{\overrightarrow{\mathrm{j}}} f(a, b)=f_{y}(a, b)$.

Geometric Definition of Directional Derivatives

The directional derivative $D_{\overrightarrow{\mathrm{u}}} f(a, b)$ is a scalar that measures the instantaneous rate of change, namely

$$
\frac{\text { change in the value of } f(x, y)}{\text { horizontal distance traveled in direction } \vec{u}}
$$

Remember that $\overrightarrow{\mathrm{u}}$ must be a unit vector!

Since the tangent line in direction \vec{u} at $(a, b, f(a, b))$ is on the tangent plane, the slope measures to be

Change in z

$$
\begin{aligned}
& \overbrace{L_{(a, b)}\left(a+u_{1}, b+u_{2}\right)-f(a, b)}^{\|\vec{u}\|} \\
& =f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}
\end{aligned}
$$

Other Representations, Gradient Vector and Formula for the Directional Derivative

Let $\overrightarrow{\mathrm{u}}=\langle p, q\rangle$ be a unit vector and $f(x, y)$ a differentiable function of two variables. Let $g(t)=f\left(a+u_{1} t, b+u_{2} t\right)$,

$$
\begin{aligned}
D_{\overrightarrow{\mathrm{u}}} f(a, b) & =\lim _{t \rightarrow 0} \frac{f\left(a+u_{1} t, b+u_{2} t\right)-f(a, b)}{t}=\lim _{t \rightarrow 0} \frac{g(t)-g(0)}{t} \\
& =g^{\prime}(0)=u_{1} f_{x}(a, b)+u_{2} f_{y}(a, b) \quad \text { (Revisit after Section 14.6) } \\
& =\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot \overrightarrow{\mathrm{u}} .
\end{aligned}
$$

The gradient vector of f at (a, b) is

$$
\nabla f(a, b)=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle
$$

In terms of this new notation,

$$
D_{\overrightarrow{\mathrm{u}}} f(a, b)=\nabla f(a, b) \cdot \overrightarrow{\mathrm{u}}
$$

Directional Derivatives: Examples

Example 1: Calculate the directional derivative of

$$
f(x, y)=x^{3} y^{2}+7 x^{2} y^{3}
$$

at $(1,1)$ in the direction of the vector $\vec{v}=\langle-2,1\rangle$.
Solution: First, find a unit vector \vec{u} parallel to \vec{v} :

$$
\|\vec{v}\|=\sqrt{5} \quad \vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\left\langle-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle
$$

Second, calculate the gradient vector at $(1,1)$:

$$
\nabla f(x, y)=\left\langle 3 x^{2} y^{2}+14 x y^{3}, 2 x^{3} y+21 x^{2} y^{2}\right\rangle \quad \nabla f(1,1)=\langle 17,23\rangle
$$

Third, calculate the directional derivative:

$$
D_{\overrightarrow{\mathrm{u}}} f(1,1)=\langle 17,23\rangle \cdot\left\langle-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle=-\frac{11}{\sqrt{5}}
$$

Gradients and Directional Derivatives in 3 Variables

Let $f(x, y, z)$ be a function of 3 variables. The gradient vector of differentiable function f at a point (a, b, c) in the domain of f is

$$
\nabla f(a, b, c)=\left\langle f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right\rangle .
$$

If $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is a unit vector, then the directional derivative of f at (a, b, c) in the direction of \vec{u} is

$$
\begin{aligned}
D_{\overrightarrow{\mathrm{u}}} f(a, b, c) & =\lim _{t \rightarrow 0} \frac{f\left(a+u_{1} t, b+u_{2} t, c+u_{3} t\right)-f(a, b, c)}{t} \\
& =\nabla f(a, b, c) \cdot \overrightarrow{\mathrm{u}}
\end{aligned}
$$

The definitions are similar for functions in any number of variables.

Directional Derivatives: Examples

Example 2: Calculate the directional derivative of

$$
f(x, y, z)=x^{3}-x y^{2}-z
$$

at $(1,1,0)$ in the direction of the vector $\vec{v}=\langle 2,-3,6\rangle$.
Solution: First, normalize \vec{v} to a unit vector \vec{u} :

$$
\|\vec{v}\|=7 \quad \overrightarrow{\mathrm{u}}=\frac{\overrightarrow{\mathrm{v}}}{\|\overrightarrow{\mathrm{v}}\|}=\left\langle\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}\right\rangle
$$

Second, calculate the gradient vector at ($1,1,0$):

$$
\nabla f(x, y, z)=\left\langle 3 x^{2}-y^{2},-2 x y,-1\right\rangle \quad \nabla f(1,1,0)=\langle 2,-2,-1\rangle
$$

Third, calculate the directional derivative:

$$
D_{\overrightarrow{\mathrm{u}}} f(1,1,0)=\langle 2,-2,-1\rangle \cdot\left\langle\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}\right\rangle=\frac{4}{7}
$$

2 Directions of Fastest Increase and Fastest Decrease

Directions with Extreme Rates of Change

Suppose that f is a differentiable function of two variables and \vec{u} is a unit vector.

$$
D_{\overrightarrow{\mathrm{u}}} f(a, b)=\nabla f(a, b) \cdot \overrightarrow{\mathrm{u}}=\|\nabla f(a, b)\|\|\overrightarrow{\mathrm{u}}\| \cos (\theta)=\underbrace{\|\nabla f(a, b)\|}_{\text {nonnegative }} \cos (\theta)
$$

where θ is the angle between $\nabla f(a, b)$ and $\overrightarrow{\mathrm{u}}$. Therefore...

The gradient ∇f points in the direction that f is increasing fastest.

- I.e., the largest (smallest) directional derivative is in the direction $\nabla f(a, b)$ (or $-\nabla f(a, b)$) and equal to $\|\nabla f(a, b)\|$ (or $-\|\nabla f(a, b)\|$).
(This assumes $\nabla f(a, b) \neq \overrightarrow{0}$. What if $\nabla f(a, b)=\overrightarrow{0}$? Stay tuned!)
- The directional derivative is zero in any direction orthogonal to $\nabla f(a, b)$.

Gradients and Level Sets

Remember that the level curves of $f(x, y)$ are the curves where f is constant. If $f(a, b)=k$, then (a, b) is on the level curve

$$
L_{k}(f)=\{(x, y) \mid f(x, y)=k\}
$$

$\nabla f(a, b)$ is orthogonal to the tangent line of $L_{k}(f)$ at (a, b).

Reason: Moving along the level curve does not change the value of f. So $D_{\vec{u}} f(P)=0$, where \vec{u} points along the tangent line to the level curve. That is, $\nabla f(a, b) \perp \vec{u}$.

Visual Interpretation: Moving perpendicularly to the tangent line is the fastest way to move between level curves.

Gradients and Level Sets

The situation is similar for a function $f(x, y, z)$ of three variables.

- $\nabla f(a, b, c)=$ direction of greatest increase of f at (a, b, c)
- $D_{\overrightarrow{\mathrm{u}}} f(a, b, c)=0$ in any direction \vec{u} tangent to the level surface $L_{k}(f)$ (that is, if \vec{u} lies in the tangent plane of $L_{k}(f)$)
- $\nabla f(a, b, c)$ is orthogonal to the tangent plane
- Normal line to $L_{k}(f)$: the line
 through (a, b, c) with direction vector $\nabla f(a, b, c)$.

Directions with Extreme Rates of Change

Example 3: A metal surface S is shaped like the graph of $z=2 x^{2}-x y+4 y^{2}-3 y$. A marble is placed on the surface at the point $P(1,1,2)$.

Part 1: Which way does the marble start to roll?
Solution: We want to find the direction of fastest decrease of f.

$$
\nabla f(x, y)=\langle 4 x-y,-x+8 y-3\rangle \quad \nabla f(1,1)=\langle 3,4\rangle
$$

So the direction is $\langle-3,-4\rangle$ (or $\left\langle-\frac{3}{5},-\frac{4}{5}\right\rangle$ if you want a unit vector).
Part 2: Find a horizontal tangent line to S at P.
Solution: The direction vector is orthogonal to the gradient; use $\langle 4,-3\rangle$. So the line can be written as

$$
\vec{r}(t)=\langle 1+4 t, 1-3 t, 2\rangle
$$

3 Tangent Planes and Normal Lines

Tangent Planes and Normal Lines

- We can find the tangent plane to any surface S defined by an equation in x, y, z (we do not need z to be a function of x and y).
- Express the equation in the form $\underbrace{F(x, y, z)=\text { constant }}$

A level Surface of F

- Next, compute $\nabla F(x, y, z)$.
- Then, the equation of the tangent plane at any point (a, b, c) on S is

$$
\nabla F(a, b, c) \cdot\langle x-a, y-b, z-c\rangle=0
$$

and the normal line has equation

$$
\vec{r}(t)=\langle a, b, c\rangle+t \nabla F(a, b, c)
$$

or equivalently

$$
x=a+t F_{x}(a, b, c), \quad y=b+t F_{y}(a, b, c), \quad z=c+t F_{z}(a, b, c) .
$$

Tangent Planes and Normal Lines

Example 4: Find the tangent plane and the normal line to the surface $4 x^{2}+9 y^{2}-z^{2}=16$ at $(2,1,3)$.

Solution: Let $F(x, y, z)=4 x^{2}+9 y^{2}-z^{2}$, so the surface is $F(x, y, z)=16$.

$$
\nabla F(x, y, z)=\langle 8 x, 18 y,-2 z\rangle \quad \nabla F(2,1,3)=\langle 16,18,-6\rangle
$$

Tangent Plane:

$$
16(x-2)+18(y-1)-6(z-3)=0
$$

Normal Line:

$$
\vec{r}(t)=\langle 2,1,3\rangle+t\langle 16,18,-6\rangle
$$

